Towards an automated analysis of social-communication behaviors in ASD

Contributors: Zoltán Tősér^{1,2}, Zachary Arnold³, Máté Csákvári², András Lőrincz², Edith Ocampo³, Mark Pollack³, Allison Wainer³, Latha Soorya³ 1. Argus Cognitive, Inc. 2. Eotvos Lorand University, Budapest, Hungary, 3. Rush University Medical Center, Chicago, IL

Introduction

Objective behavioral assessment is a mainstay of behavioral science tools. Recent advances adapting human-Al interaction technology has promise to streamline analysis of core social-communication behaviors for treatment research. [1]

Procedures

We have developed a protocol to evaluate and refine machine learning algorithms to detect social communication behaviors in typically developing (TD) children and children with neurodevelopmental disorders (NDD) such as ASD. See Table 1 for sample characteristics & Fig 1. for data collection methods.

Figure 1. Protocol Development

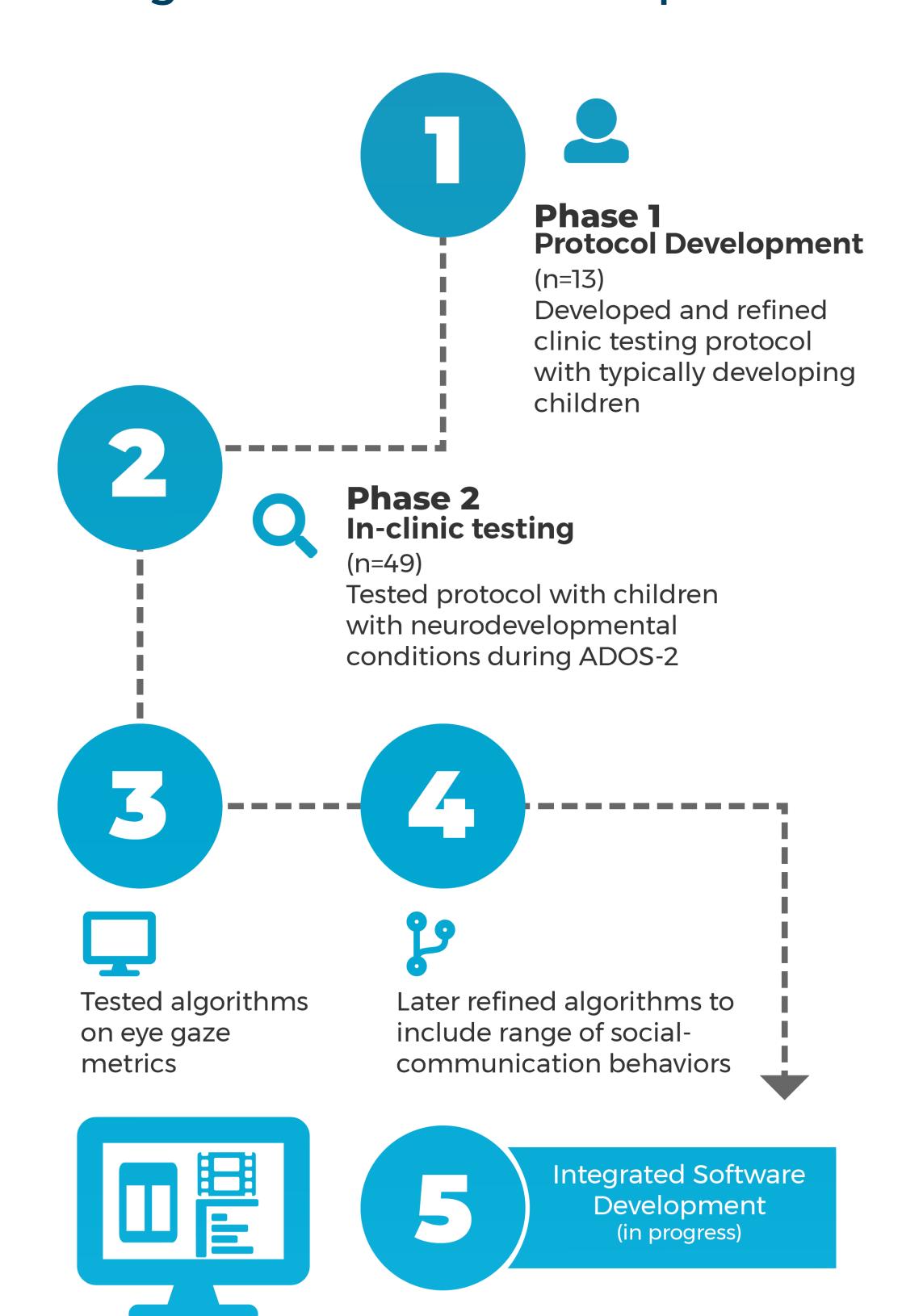


Figure 2. Non-obtrusive Data Collection Procedures

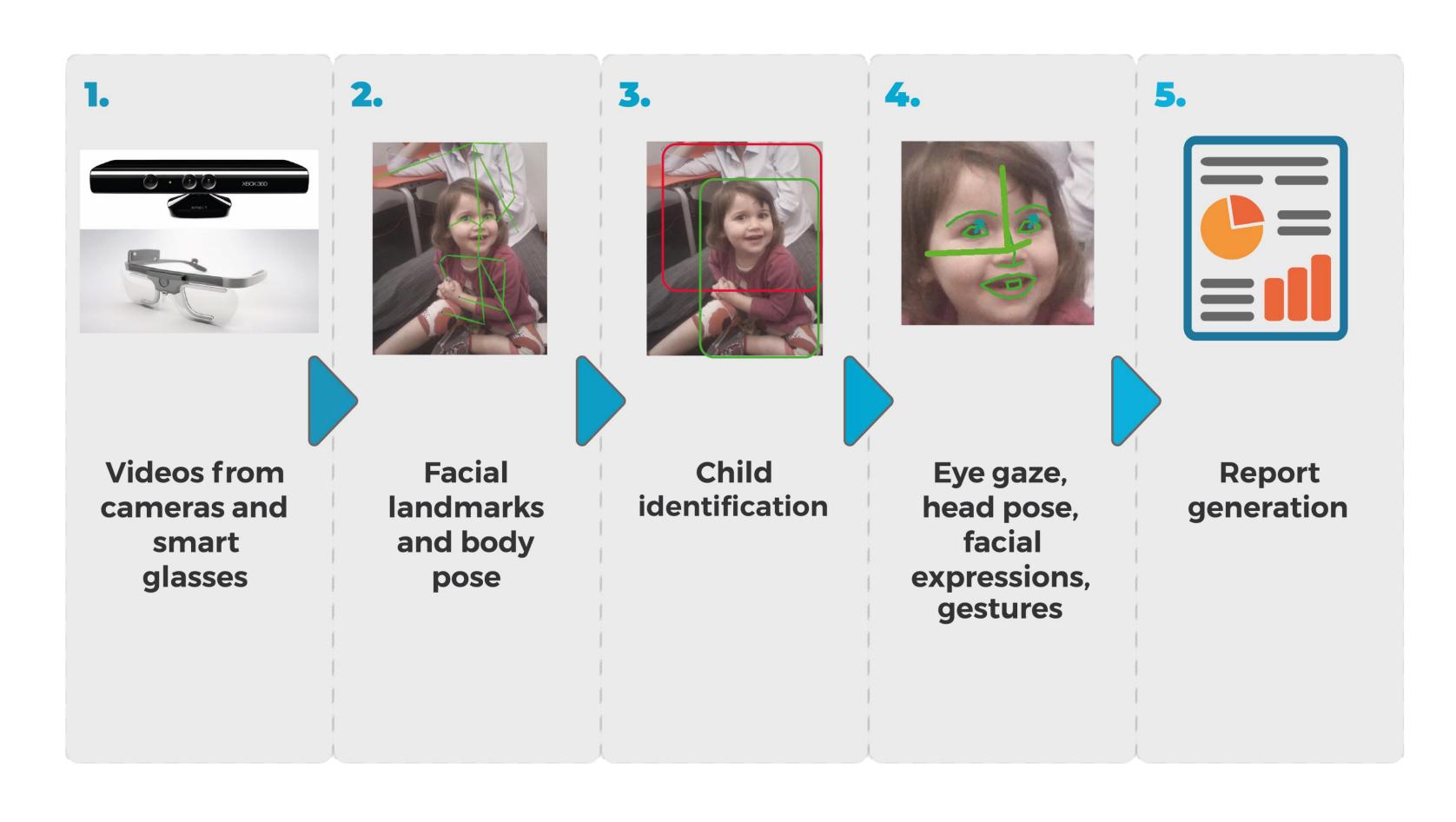


Table 1. Participant Demographics

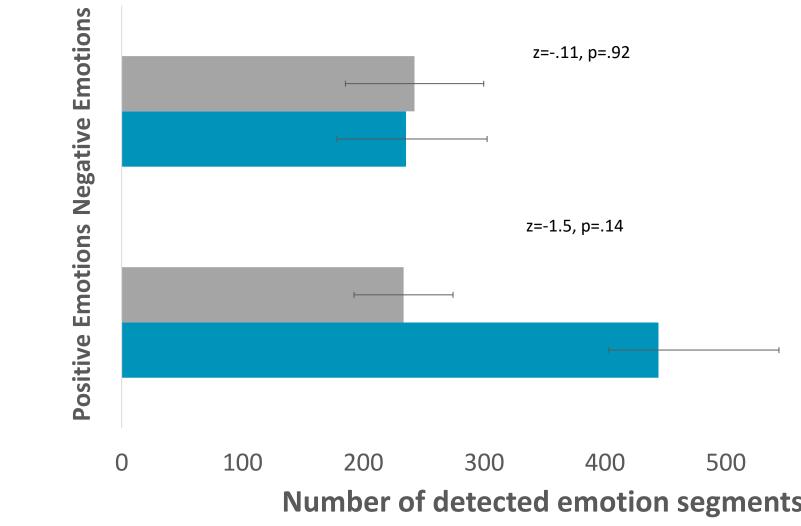
	Full Sample		Age-matched Comparative Analysis		
	TD n=13	NDD n=49	TD n=8	ASD n=8	
Age in Years	5.9 (2.6)	8.9 (3.6)	5.9 (3.0)	5.6 (3.4)	
Sex (N, % male)	6, 46.2%	29 <i>,</i> 59.2%	4, 50%	6, 75%	
Full Scale IQ (mean, SD)	n/a	88.1 (24.1)	n/a	111 (16.7)	
ADOS-2 CSS (mean, SD)	1.6 (1.8)	6.1 (2.8)	1.9 (2.1)	6.3 (3.1)	

Table 2. Correlations between biometric data and corresponding ADOS-2 items

	Positive valence emotion	Negative valence emotion s	Gaze Initiatio ns (Child)	Gaze Respons es (Child)	Synchroniz ed Gaze
ADOS-2 unusual eye contact	33	07	41	46	47
ADOS-2 facial expression s	52*	35	26	35	41

Figure 3. Gaze Behavior 300 z=-1.16 p=.25 TD ASD z=-2.4, p=.02* Initiations Responses Synchronized

Figure 4. Frequency of Emotion Expressions



Data analysis

- We combined machine learning components into an algorithm that finds and analyzes the patient (Fig. 2)
- Quality assurance checks included testing on independent emotion and eye gaze data sets.
 We use a state-of-the-art deep learning system that reaches a 0.63 mean F1 score for facial action unit activity detection on a frame-byframe level. [2]
- Our solution is a fully automated system, it does not suffer from reproducibility issues
- Spearman's rho used to estimate relationship between biometric data and clinician ratings of behavior on ADOS-2 items. Wilcoxon sign rank test used to evaluate group differences.

Results & Discussion

- Moderate, negative correlations found between frequency of gaze & facial expressions and clinician ratings of impairments on ADOS-2 items (Table 2)
- Gaze data suggest lower levels of initiations, responses, and synchronized gaze in ASD vs. TD with statistically significant differences found in synchronized gaze (Fig. 3)
- Emotion data indicate lower levels of positive emotions but equivalent levels of negative emotions in ASD vs. TD (Figure 4)

Conclusions & Future Directions

- System shows promise to identify digital biomarkers closely linked to disease phenotype in ASD
- Monitoring capacity includes behavioral classes as well as subtle behavioral markers of change
- Future directions will require training system in broader neurodevelopmental and psychiatric samples (e.g. at-risk schizophrenia, ADHD) & testing within behavioral and pharmacological intervention trials

References

[1] Lőrincz, András. "Revolution in health and wellbeing." *KI-Künstliche Intelligenz* 29.2 (2015): 219-222.
[2] Tősér, Zoltán, et al. "Deep learning for facial action unit detection under large head poses." *European Conference on Computer Vision*.

Springer, Cham, 2016.

